
1. Introduction
Tropical cyclones (TCs) are some of the most dangerous natural hazards. Understanding how their frequency 
changes with climate has a significant socioeconomic impact. Statistical correlations between the observed TC 
frequency and the surrounding environment have been developed since the 1970's (Gray, 1979), but the corre-
lations are complex and the extrapolation to future conditions is not constrained by historical records (Camargo 
et al., 2014; Emanuel, 2020).

To capture the full complexity of the changing environmental conditions, high-resolution coupled global climate 
models (GCMs) are widely used to simulate the global circulation and TCs in a consistent framework. In simu-
lations of radiatively forced climate change, the response of TC frequency has a large spread among coupled 
GCMs. A recent multi-model comparison by Knutson et  al.  (2020) showed that the response is between an 
increase of 22% and a decrease of 28% per 2 K of mean surface temperature increase. The uncertainty in the sign 
of TC frequency response is also seen in different methods combining statistical and dynamical downscaling 
models of TCs (Emanuel, 2020; Jing et al., 2021; Lee et al., 2020), which further illustrates the difficulty of 
constraining future TC frequency using existing observations and theory.

Recently, a seeding-transition framework has been developed to explain the TC variation across climate perturba-
tions (Hsieh, Vecchi, et al., 2020; Vecchi et al., 2019) and the annual cycle (Yang et al., 2021). In this framework, 
the TC evolution is decomposed into two stages, including a seeding stage followed by a transition stage. In the 
seeding stage, a convective weak vortex, referred to as a seed, is generated within the large-scale circulation. The 
frequency of seeds has been found to have a significant impact on the frequency of TCs in response to climate 
change in several models (Sugi et al., 2020; Vidale et al., 2021; Yamada et al., 2021).
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In the transition stage, a seed evolves into a TC with a probability that depends on the ventilation index, which 
is a function of the environmental potential intensity, saturation deficit, and vertical wind shear (Hoogewind 
et al., 2020; Hsieh, Vecchi, et al., 2020; Tang & Camargo, 2014; Vecchi et al., 2019; Yang et al., 2021). The 
transition probability is less important to explain the response of TC frequency to climate change (Hsieh, Vecchi, 
et al., 2020), but it is important to explain the response to the annual cycle (Yang et al., 2021) and to the interan-
nual variability (Ikehata & Satoh, 2021).

While a significant source of the uncertainty in TC projections has been identified to be the uncertainty in the 
seed frequency (Yamada et al., 2021), it is not clear how the latter is related to the model spread in the large-scale 
circulation. In this study, we apply a downscaling theory for seeds developed based on dynamical scale analysis 
and aqua planet experiments (Hsieh, Vecchi, et al., 2020) to multiple models that show opposite changes of seeds. 
A large number of experiments are performed using four atmospheric models with different parameterizations of 
convection and resolutions. This study complements the single model results in Hsieh, Vecchi, et al. (2020) and 
the annual cycle results in Yang et al. (2021), and shows that the downscaling theory explains the seed frequency 
across models.

2. Methods
2.1. Models

We utilize four global atmospheric models developed at the Geophysical Fluid Dynamics Laboratory (GFDL) 
that have been applied extensively in TC research. The models are HiRAM-50km, AM2.5-50km, AM2.5-25km, 
and AM4-50km. The HiRAM model, having a horizontal grid spacing of 50 km, has been shown to capture the 
global (Zhao et al., 2009) and regional TC activity across seasonal (Zhao & Held, 2010) to interannual (Chen & 
Lin, 2011) time scales.

The AM2.5-50km model is the atmospheric component of the coupled model Forecast-oriented Low Ocean 
Resolution (FLOR) (Vecchi et al., 2014) and has the same horizontal resolution as HiRAM. The AM2.5-25km 
model is the atmospheric component of the coupled model HiFLOR (Murakami et al., 2015), having a smaller 
horizontal grid spacing of 25 km. The FLOR model is skillful in the seasonal TC forecast (Vecchi et al., 2014). 
The HiFLOR model inherits many properties of FLOR and additionally captures the frequency of major hurri-
canes (Murakami et al., 2015). Notably, the TC response in HiFLOR is on the high end of the multi-GCM spread 
(Bhatia et al., 2018).

The AM4 model is the latest generation of atmospheric model developed at GFDL, which has been used in 
Model Intercomparison Projects including CMIP6 and HighResMIP (Zhao, 2020). It is capable of capturing the 
observed annual cycle and geographical distribution of TC frequency with a horizontal grid spacing of 100 km 
(Zhao et al., 2018). Here we use a higher resolution version of 50 km, which better simulates the synoptic-scale 
atmospheric variability (Zhao, 2020).

The models have the same dynamical core and are closely related to each other, but they have different representa-
tions of unresolved processes, in particular the convective parameterization schemes. While all models we use are 
skillful in capturing the observed TC activity given sea surface temperature (SST), they cover a wide range of TC 
responses to future warming climates, similar to the spread of coupled GCMs (Knutson et al., 2020).

2.2. Experiments

A large number of experiments are performed and summarized in Table 1. To control for internal climate vari-
ability and to isolate the atmospheric response to SST, we prescribe identical SST and radiative forcing to our 
models. For the first three models (HiRAM-50km, AM2.5-50km, and AM2.5-25km), the control experiment is 
driven by the annual cycle of SST averaged between 1986 and 2005 following Vecchi et al. (2019). The annual 
cycle is repeated 40 times after 10 years of model spin up, so that the 40 year mean represents the climatological 
annual cycle.

Similar to Held and Zhao (2011), experiments with uniform 2 K warming, CO2 doubling, and combined pertur-
bations are performed. The SST perturbation for the RCP4.5 late 21st century warming experiment is constructed 
using the mean response of 17 models in the Coupled Model Intercomparison Project Phase 5 following  
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van der Wiel et al. (2017) and Bhatia et al. (2018). In addition, experiments with extreme perturbations of the SST 
gradient are performed following Hsieh, Vecchi, et al. (2020). To briefly summarize, the “warming SST > 28C” 
experiment increases the SST warmer than 28°C by 1 K; while “warming SST < 28C” experiment increases the 
SST cooler than 28°C by 1 K.

Two additional experiments are designed for this study: the El Niño and La Niña experiments. The SST annual 
cycles are averaged over the nine strongest El Niño years between 1980 and 2015 whose Oceanic Niño Indices 
are greater than 1: 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2009, 2015. Similarly, the SST annual cycles are 
averaged over the seven strongest La Niña years in this time frame whose Oceanic Niño Indices are less than −1: 
1988, 1995, 1998, 1999, 2007, 2010, 2011. The CO2 concentration is the same in all experiments, except in the 
CO2 doubling experiment.

The AM4-50km experiments have a slightly different control climate, whose SST annual cycle is averaged 
between 1980 and 2014 (Zhao, 2020). The control, uniform 4 K warming, and CO2 quadrupling experiments are 
performed over 30 repeating annual cycles, and the last 20 years are analyzed. The experiments have been used 
to study atmospheric rivers (Zhao, 2020).

Lastly, historical experiments are performed with SST time series from the Atmospheric Model Intercomparison 
Project (Durack & Taylor, 2018). An ensemble of five simulations are performed for HiRAM-50km and AM2.5-
50km. The ensemble size is 3 for the more expensive AM2.5-25km. The ensembles are constructed by perturbing 
the initial conditions following Yang et al. (2021).

2.3. Identification Algorithms for TCs and Seeds

TCs are tracked using an algorithm that includes criteria on sea-level pressure local minimum, surface wind 
speed, warm core, and lifetime (Harris et al., 2016). The threshold values for the models we use follow Yang 
et al. (2021) and are calibrated against observations. The values influence the absolute number of TCs but have 
little influence on the percentage change from the control climate.

Time slice experiments

Model HiRAM-50km  AM2.5-25km AM4-50km

AM2.5-50km

Analysis period 40 years 20 years

Experiment Control Control

+2 K +4 K

2 × CO2 4 × CO2

+2 K & 2 × CO2

RCP4.5

El Niño

La Niña

Warming SST > 28C

Warming SST < 28C

Time series experiments/reanalysis (1980–2015)

Model HiRAM-50km AM2.5-25km ERA5 reanalysis

AM2.5-50km (Hersbach et al., 2020)

Ensemble size 5 3 1

Note. The time slice experiments are used to generate Figure 1 and Figures 2a and 2b. The time series experiments/reanalysis 
are used to generate Figure 2c.

Table 1 
List of Experiments and Reanalysis Used in This Study
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Seeds are tracked using an algorithm based on the six-hourly snapshots of precipitation rate and 850 hPa vorticity 
fields (Hsieh, 2022). Seeds are defined as clusters of extreme precipitation (>99.5th percentile of instantaneous 
precipitation rates between 30°S and 30°N) with diameter greater than 100 km, whose 850 hPa relative vorticity 
at any instance over the lifetime exceeds 4 × 10 −4 s −1. Clusters between two consecutive snapshots are connected 
if their centroids are no more than 300 km apart, meaning that the average translation speed over the six hour 
time span is less than 50 km hr −1. The tracker parameters are determined in Hsieh, Vecchi, et al. (2020), such 
that the lowest vorticity seed corresponds to when the sea-level pressure minimum occurs. The same thresholds 
are used for the three 50 km models (HiRAM-50km, AM2.5-50km, and AM4-50km). The number of seeds is 
approximately three times the number of TCs in the control climate.

For the higher-resolution model, AM2.5-25km, the model output is interpolated to the 50 km grid before apply-
ing the same seed tracker with some modifications of thresholds. Because it better resolves the vortex core, the 
vorticity threshold is increased by a factor of 2. In addition, because low resolution models tend to overestimate 
the extreme precipitation rate compared with high resolution models, even after interpolating to the same grid 
(Hsieh, Garner, & Held, 2020), the percentile precipitation rate threshold is reduced from 99.5th to 99th, such 
that seeds in the 25 km and 50 km models have similar size distributions and total rainfall. Analogous to the TC 
tracker thresholds, the seed tracker thresholds influence the absolute number of seeds but have little influence on 
the percentage change from the control to the perturbed climate.

2.4. The Climatological Seed Propensity Index

The seed propensity index (SPI) is designed to parameterize the propensity for seeds to occur within the large-
scale circulation. SPI is defined as:

𝑆𝑆 = −𝜔𝜔
1

1 +𝑍𝑍−1∕𝛼𝛼
, (1)

where𝑍𝑍 =
𝑓𝑓 + 𝜁𝜁

√
|𝛽𝛽 + 𝜕𝜕𝑦𝑦𝜁𝜁 |𝑈𝑈

. (2)

The monthly mean vertical velocity averaged over 40 years (or 20 years for AM4-50km) on the pressure coordi-
nate, ω, is evaluated at 500 hPa. The descending portion of ω is zeroed out.

In the non-dimensional parameter Z, f and β represent the Coriolis parameter and its meridional gradient, ζ is the 
monthly mean relative vorticity at 850 hPa, and U = 20 m s −1 and α = 0.69 are fitting parameters determined in 
aquaplanet simulations (Hsieh, Vecchi, et al., 2020). The numerator, which is the absolute vorticity, is replaced 
with zero if it is negative (i.e., anticyclonic).

The fraction 1/(1 + Z −1/α) scales as Z 1/α near the equator, but it is close to a linear dependence on Z within 10% 
(Hsieh, Vecchi, et al., 2020). The percentage change of SPI with climate is fairly insensitive to the fitting param-
eters, as long as this fraction increases from zero near the equator and approaches a constant in the subtropics.

The non-dimensional parameter Z represents the ratio between the vortex stretching term and the advection of 
planetary vorticity term in the low-level vorticity equation, which is a proxy for the rate of vorticity increase for 
a developing tropical disturbance (Hsieh, Vecchi, et al., 2020).

2.5. The Climatological Ventilation Index and Transition Probability

The probability that a seed transitions into a TC is parameterized by a sigmoid function of the ventilation index:

𝑝𝑝 =
1

1 + (Λ0∕Λ)
−1∕𝛾𝛾

, (3)

whereΛ =
𝑣𝑣𝑠𝑠 ⋅ 𝜒𝜒

𝑣𝑣𝑝𝑝
. (4)
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The non-dimensional ventilation index Λ is computed using the monthly mean vertical wind shear vs multiplied 
by the non-dimensional saturation deficit χ and divided by the potential intensity vp calculated based on the 
monthly mean thermodynamic profiles (Bister & Emanuel, 2002). The typical ventilation index Λ0 = 0.014 and 
the fitting parameter γ = 0.89 have been determined observationally (Tang & Emanuel, 2012) and used to explain 
the annual cycle of TCs in global atmospheric models (Yang et al., 2021).

When computing the global mean, SPI is averaged over all oceans within 30°S–30°N as it indicates the loca-
tion of seed formation. On the other hand, the probability p is averaged over subtropical oceans (30°–10°S and 
10°–30°N) having SST warmer than 26°C, representing the mean environment encountered by the entire seed 
trajectories.

3. Results
3.1. The Global Response of Seeds

To understand the model response to the diverse climate perturbations, we first compare the change of tropi-
cal mean precipitation and show that it is consistent across models. We then show that this quantity does not 
constrain the model spread in seed frequency, and that the SPI is a more relevant large-scale quantity. The model 
spread in seed frequency is then compared with the model spread in TC frequency.

Figure 1a compares the seed frequency with the tropical mean precipitation across all time slice experiments and 
models. In response to CO2 doubling and unchanged SST, the seed frequency decreases in every model. This 
is consistent with the decrease of tropical mean precipitation, combined with qualitatively similar atmospheric 

Figure 1. Relationships between the frequency of tropical cyclones (TCs), seeds, and the climate state. (a) The simulated 
seed frequency versus the tropical mean precipitation (P). (b) The simulated seed frequency versus the tropical mean seed 
propensity index (SPI). (c) The simulated TC frequency versus the simulated seed frequency; r 2 = 0.23 for all experiments 
and r 2 = 0.75 excluding the warming 28C experiments. The lightly shaded bars indicate the 95% confidence intervals 
calculated from the interannual time series. (d) The simulated TC frequency versus the simulated seed frequency multiplied 
by the ventilation-based probability (p). All quantities are integrated over the tropics (30°S–30°N) before computing the 
percentage change relative to the control experiment. The colors indicate the models, and the symbols indicate the climate 
perturbations.
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circulation responses across models. On the other hand, the circulation responses (quantified in the following by 
SPI) are different with respect to uniform 2 K warming, leading to opposite signs of seed frequency changes. 
While the change of mean precipitation with surface temperature increase is constrained by theory (Jeevanjee 
& Romps, 2018) and consistent across models (the same symbols line up vertically in Figure 1a), it does not 
constrain the sign of the seed response.

It is necessary to consider the spatial pattern of the large-scale ascent and the absolute vorticity, quantified by SPI 
(Equation 1). In SPI, the climatological vertical velocity ω is balanced with the energy flux convergence into the 
atmospheric column divided by the gross moist stability (Hsieh, Vecchi, et al., 2020), suggesting that it represents 
the ascending motion associated with large-scale energy balance, rather than small-scale convective dynamics.

The other factor in SPI, which is a sigmoid function of Z, gives larger weights to the off-equatorial ω, as larger 
background vorticity favors the formation of seeds due to vortex stretching. SPI captures the response of explic-
itly simulated vortex seeds with r 2 = 0.61 (Figure 1b). In comparison, the tropical mean precipitation fails to 
capture the different signs of responses to +2 K across models (the star symbols in Figure 1a).

We include the AM4–50km model to stress test SPI. The model is driven by stronger climate perturbations, 
including uniform surface warming of 4 K and quadrupling of CO2 concentration. In Figure 1, the +4 K and 
4 × CO2 responses are divided by two to compare with the +2 K and 2 × CO2 responses in the other models. The 
AM4-50km results are in between the HiRAM-50km and the two AM2.5 models. They follow the same linear 
relationship in Figure 1b, providing further evidences for the generality of SPI.

The response of TC frequency is compared with the response of seed frequency in Figure 1c. Seeds are convec-
tive weak vortices, which have approximately 40% of the minimum TC vorticity. The transition probability from 
seeds to TCs vary between 25% and 60% depending on the experiment. The “warming SST > 28C” experiment 
is designed to enhance the tropical SST gradient, increasing the ventilation index and decreasing the transition 
probability; and vice versa for the “warming SST < 28C” experiment. Therefore, the responses of seeds and TCs 
are more distinct with these two perturbations.

The difference between the responses of seed frequency and TC frequency for the two warming 28C perturba-
tions is reduced when the seed frequency is multiplied by the ventilation-based probability, p (Equation 3). The 
correlation is r 2 = 0.49 across all perturbations in Figure 1d, higher than r 2 = 0.23 in Figure 1c. The improved 
correlation by including p is consistent with the findings of Hsieh, Vecchi, et al. (2020) for a single model and 
Yang et al. (2021) for the TC annual cycle.

When the two warming 28C perturbations are excluded, the correlation between seeds and TCs increases from 
r 2 = 0.23 to r 2 = 0.75 with a slope close to 1 in Figure 1c. That is, the transition probability changes modestly in 
response to the more climatically plausible perturbations.

Consistent with findings from models developed at other institutions (Walsh et  al.,  2015), the TC frequency 
response to +2 K has a larger model spread than to 2 × CO2. This difference is captured by the model spread in 
the seed frequency.

3.2. The Basin-Scale Response of Seeds

Since SPI incorporates the spatial structures of the climatological vertical velocity and absolute vorticity, it is able 
to capture the geographical variability of seeds. Figure 2 shows the spatial integral of SPI (bars) and the simu-
lated seed frequency (circles) over major ocean basins. Note that the basin-wide percentage change is calculated 
relative to the global sum rather than the basin sum, so this value summed over all basins is the global percentage 
change.

Across all panels in Figure 2, the model spread is dominated by the North Pacific, consistent with results from the 
High Resolution Model Intercomparison Project (Roberts et al., 2020). The North Pacific is separated into three 
sub-basins to emphasize the model spread over the warm pool region. The boundary between the Northwest and 
Northcentral Pacific is at 145° longitude to separate the warm pool and the cold tongue. The boundary between 
the Northcentral and Northeast Pacific is at 205° longitude so that they have approximately equal area.
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Figure 2a compares the seed frequency and SPI in response to uniform 2 K warming across ocean basins and 
models. SPI underestimates the global seed frequency because some weather-scale variability is not captured 
by the monthly mean, but the model spread in seed frequency follows the pattern of the model spread in SPI. 
The seed frequency is the most inconsistent over the Northwest and Northcentral Pacific, especially in the sign 
of response, and SPI qualitatively captures this model spread. HiRAM-50km shows a weakening of large-scale 
atmospheric ascent over the Northwest Pacific, where SPI decreases. On the other hand, the weakening does not 
occur in the two AM2.5 models.

In Figure 2b, the percentage change between the time slice El Niño and La Niña experiments are used to inves-
tigate a different large-scale atmospheric ascent pattern. SPI qualitatively captures the inter-basin variability and 
the model spread in seed frequency change between the El Niño and La Niña experiments. The models show a 
consistent decrease in the North Atlantic; while the Northwest Pacific is again more inconsistent across models.

The modeled SPI can also be compared with the reanalysis when sufficient number of years are averaged over. 
Using the historical simulations driven by the observed SST time series, years with Oceanic Niño Indices greater 
than 1 and less than −1 are respectively averaged over (detailed in Section 2.2). This procedure yields a composite 

Figure 2. Maps of the seed propensity index (SPI) change. Basin-wide contributions of SPI (bars) to the global percentage change between (a) the uniform 2 K 
warming and the control climates, (b) the time slice (repeating annual cycle) El Niño and La Niña experiments, and (c) composites of the historical El Niño and La 
Niña years. The percentage change of the simulated seed frequency (circles) is shown for the time slice experiments in (a) and (b). The sum over all basins equals the 
global percentage change.
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of the nine strongest El Niño years and a composite of the seven strongest La Niña years. The percentage change 
between the El Niño and La Niña composites, averaged over all ensemble members, is shown in Figure 2c. The 
same procedure is applied to the ERA5 (Hersbach et al., 2020) reanalyzed circulation, except no ensemble mean 
is taken. Seeds are not tracked in this panel as they are not well-defined in the reanalysis.

The inter-basin variability is fairly consistent across models and reanalysis. All models and the reanalysis capture 
the decrease of SPI in the North Atlantic and the increase of SPI in the Northeast Pacific in the El Niño years, 
consistent with the observed interannual variability of TC frequency (Sobel et al., 2021). In the Northwest Pacific, 
the inter-model distinctions are slightly larger but are insufficient data to rule out the plausibility of either model 
against the observed El Niño-Southern Oscillation (ENSO), despite the fact that the models have qualitatively 
different future projections.

4. Summary
This study presents a large number of model experiments and shows that the seed frequency strongly influences 
the TC frequency across climate perturbations and models having different convective parameterizations and 
resolutions. For the more plausible climate perturbations, including uniform warming, CO2 doubling, RCP4.5, 
and El Niño/La Niña patterns, the seed response is linearly correlated with the TC response across models. For 
very strong but climatically implausible changes in tropical SST gradients (the two warming 28C perturba-
tions), it is necessary to consider the effect of entropy ventilation, as is the case for the TC annual cycle (Yang 
et al., 2021). Even though the models are more consistent in the response to ENSO, they disagree in the response 
to uniform warming.

In all experiments performed here, the seed variation is explained by the climatological circulation, quantified 
by SPI which represents the large-scale ascent weighted by a function of the large-scale absolute vorticity. This 
downscaling formula is agnostic to the synoptic-scale phenomena, as long as the climatological circulation is 
set up by the radiative and surface forcings. This may explain why in the limited-domain simulation of Patricola 
et al. (2018), the atmospheric circulation in the North Atlantic generates seeds despite the African Easterly waves 
being artificially suppressed.

We have shown that SPI describes the propensity to generate convective weak vorticies, which is a simple defini-
tion of seeds based only on the precipitation and vorticity fields. Alternatively, seeds are defined in some studies 
by using a weaker vorticity threshold in the TC tracking algorithm (Ikehata & Satoh, 2021; Sugi et al., 2020; 
Vidale et al., 2021; Yamada et al., 2021). Our definition and the alternative definition of seeds have similar spatial 
distributions and transition probability to TCs (Hsieh, Vecchi, et al., 2020). In general, seeds in our definition are 
more strongly correlated with SPI, but both definitions of seeds are correlated with TCs.

The seed propensity index provides a simplified framework in which to analyze the physical processes influ-
encing the seed frequency. For instance, the denominator of Z is indicative of barotropic instability (Bembenek 
et al., 2021; Hsieh, Vecchi, et al., 2020), which may lead to the break down of the ITCZ and generate seeds; ω is 
determined by the large-scale energy flux convergence and the gross moist stability, which may be influenced by 
the cloud radiative feedback or the entrainment rate (Zhao et al., 2018) and may depend on the horizontal reso-
lution. We have shown that the correlation between the seed frequency and SPI applies across model resolutions, 
but their values may co-vary with resolution. Ongoing research addresses how these physical processes influence 
the seed frequency and in turn the TC frequency.
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Data Availability Statement
The model source code is available from https://www.gfdl.noaa.gov/atmospheric-model/. The ERA5 data set 
is available from https://doi.org/10.24381/cds.6860a573. Python scripts for tracking seeds and computing the 
seed propensity index are available from https://github.com/tlhsieh/tropical_cyclone_seeds and are permanently 
archived at https://doi.org/10.5281/zenodo.6193045.
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